医学影像技术学和医学影像学有什么区别吗?(详细点)
一、针对性不同:
1、影像技术学是针对操作技术学习。
2、影像学是包括诊断和技术方面,影像学范围更广。
二、基本定义不同:
1、医学影像技术主要分对比剂、传统X线摄影、数字X线摄影、计算机断层扫描、磁共振成像、数字减影血管造影、图像显示与记录。
2、医学影像技术还包括图像处理与计算机辅助诊断、图像存档与通信系统、医学影像质量管理与成像防护、医学影像技术的临床应用。
3、医学影像学是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来。
4、医学影像学的作用是供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。
三、学习的内容不同:
1、影像技术更偏重于理工科,比如对物理、计算机编程要求比较高,VB、C语言、宏汇编、单片机都要学,当然还有图像处理,因此对英语要求也高,因为很多都是英文操作的。
2、影像学诊断方向的更接近临床,除了学各种影像诊断的专业课以外,临床医学专业学生学习的,内外妇儿,眼科,皮肤,神经病,核医学这样的临床课也都要学
四、毕业后去向不同:
1、影像技术学毕业后主要进医院B超室去做技术员。
2、影像学毕业后可以努力考研做医生。
五、职业发展不同:
1、影像技术学毕业后很快进入工作,并能用七年左右时间成为高级技师,获得高薪。
2、影像学需要考研读博士,慢慢成为一个医生,更慢进入工作,但是前景也是比较好的.
扩展资料:
医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。
前者是指图像行成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。
作为一门科学,医学影像属于生物影像,并包含影像诊断学、放射学、内视镜、医疗用热影像技术、医学摄影和显微镜。另外,包括脑波图和脑磁造影等技术,虽然重点在于测量和记录,没有影像呈显,但因所产生的数据俱有定位特性(即含有位置信息),可被看作是另外一种形式的医学影像。
临床应用方面,又称为医学成像,或影像医学,有些医院会设有影像医学中心、影像医学部或影像医学科,并配备相关的仪器设备,编制有专门的护理师、放射技师以及医师,负责仪器设备的操作、影像的解释与诊断(在台湾须由医师负责),这与放射科负责放射治疗有所不同。
在医学、医学工程、医学物理与生医资讯学方面,医学影像通常是指研究影像构成、撷取与储存的技术、以及仪器设备的研究开发的科学。而研究如何判读、解释与诊断医学影像的是属于放射医学科,或其他医学领域(如神经系统学科、心血管病学科...)的辅助科学。
高校开设此类专业类型
医学影像学专业分为四年制和五年制,具体介绍可参照百度百科“医学影像技术”词条。
医学影像技术是医学专业名。我国之所以在06年出台政策,把同一专业分成两种不同的学年制去施教,目的是想与西方某些发达国家接轨。培养四年制的学生,为的就是这种学生将来可以专门从事技术方面的工作的,而培养五年制的就是将来从事诊断治疗工作的。我们不能否定国家这个做法,因为时代的趋势确实是需要把各方面的人才分开,而去专攻某个专业,社会才能不断进步。
最重要的一点区别就是毕业后的文凭不同。
上文提到,五年制的毕业后,在医疗单位要从事诊断工作,毕业后颁发的文凭也就是医学学士学位了。四年制的就不同了,鉴于国家的政策要求,只能颁发理学学士学位。依据现有国家政策(如下): 执业医师报名条件
依据《中华人民共和国执业医师法》相关规定,内容如下:
第九条 具有下列条件之一的,可以参加执业医师资格考试:
(一)具有高等学校医学专业本科以上学历,在执业医师指导下,在医疗、预防、保健机构中试用期满一年的;
(二)取得执业助理医师执业证书后,具有高等学校医学专科学历,在医疗、预防、保健机构中工作满二年;具有中等专业学校医学专业学历,在医疗、预防、保健机构中工作满五年的。
医师资格考试报名资格规定:
十五、具有下列情形之一的,不予受理医师资格考试报名:
1、卫生职业高中毕业生;
2、基础医学类、法医学类、护理学类、辅助医疗类、医学技术类等相关医学类和药学类、医学管理类毕业生;
3、医学专业毕业,但教学大纲和专业培养方向或毕业证书注明为非医学方向的;
4、医学专业毕业,但教学大纲和专业培养方向或学位证书证明学位是非医学的;
5、非现役军人持军队医疗、预防、保健机构出具的试用期证明报考或在军队报名参加医师资格考试的;
6、现役军人持地方医疗、预防、保健机构出具的试用期证明报告的;
7、持《专业证书》或《学业证书》报名参加医师资格考试的;
8、1999年1月1日以后入学的卫生职工中等专业学校的学生毕业后报考执业助理医师资格考试的。
不难看出,就目前(06到10年)来看,四年制不能像五年制的医学影像那样报考执业医师证,这也就是四年制和五年制最本质的区别,正是这种区别,造成了毕业后的差异。
参考资料:百度百科-医学影像技术
pacs各个字母是什么意思
PACS是英文PictureArchivingCommunicationSystem的缩写,译为“医学影像存档与通信系统”,其组成主要有计算机、网络设备、存储器及软件。它是一个涉及放射医学、影像医学、数字图像技术(采集和处理)、计算机与通讯、C/S体系结构的多媒体DBMS系统,涉及软件工程、图形图像的综合及后处理等多种技术,是一个技术含量高、实践性强的高技术复杂系
pacs - 简要介绍
网络1PACS用于医院的影像科室,最初主要用于放射科,经过近几年的发展,PACS已经从简单的几台放射影像设备之间的图像存储与通信,扩展至医院所有影像设备乃至不同医院影像之间的相互操作,因此出现诸多分类叫法,如几台放射设备的联网称为Mini PACS(微型PACS);放射科内所有影像设备的联网Radiology PACS(放射科PACS);全院整体化PACS,实现全院影像资源的共享,称为Hospital PACS。PACS与RIS和HIS的融合程度已成为衡量功能强大与否的重要标准。PACS的未来将是区域PACS的形成,组建本地区、跨地区广域网的PACS网络,实现全社会医学影像的网络化。
由于PACS需要与医院所有的影像设备连接,所以必须有统一的通讯标准来保证不同厂家的影像设备能够互连,为此,1983年,在北美放射学会(ACR)的倡议下,成立了ACR-NEMA数字成像及通信标准委员会。众多厂商响应其倡议,同意在所生产的医学放射设备中采用通用接口标准,以便不同厂商的影像设备相互之间可以进行图像数据交流。1985年,ACR/NEMA1.0标准版本发布;1988年,该标准再次修订;1992年,ACR/NEMA第三版本正式更名为DICOM3.0(Digital lmaging and Communication in Medicine),中文可译为"医学数字图像及通信标准"。DICOM3.0已为国际医疗影像设备厂商普遍遵循,所生产的影像设备均提供DICOM3.0标准通讯协议。符合该标准的影像设备可以相互通信,并可与其他网络通信设备互连。
在系统的输出和输入上必须支持DICOM3.0标准,已成为PACS的国际规范。只有在DICOM3.0标准下建立的PACS才能为用户提供最好的系统连接和扩展功能。
pacs - 通信技术
网络2信息技术是现代文明的基础,是开展科学研究和技术开发的重要支撑手段,是高技术中的关键技术。信息技术的发展,直接影响着社会生产力和综合国力的变化。
近50年来,由于半导体、计算机和通信技术的迅猛发展,数字化的信息已经渗透到了与人们生活密切相关的各个领域。在医学图像处理领域,随着放射学(Radiology)的迅速发展,为医疗诊断提供了多种人体成像技术,例如:CT、MRI、DSA(数字减影)、NM(核医学成像)、US(超声扫描显像装置)、CR(计算机投影射线照像术)、PET(正电子发射断层X线照相术)等。这些新的医学成像技术为临床诊断提供了丰富的影像学资料,在相当程度上提高了医疗机构的诊断和治疗水平,但同时也使得如何有效地管理、处理和利用大量繁杂的医学图像资料的问题日益突出,急待解决。
计算机技术日新月异的发展,尤其是高速计算设备、网络通讯及图像采集、处理的软、硬件技术的一系列突破性进展,为医学图像的数字化采集、存储、管理、处理、传输及有效利用提供了现实的数字技术基础。
PACS系统(Picture Archiving Communication System),即医学影像的存储和传输系统,它是放射学、影像医学、数字化图像技术、计算机技术及通信技术的结合,它将医学图像资料转化为计算机数字形式,通过高速计算设备及通讯网络,完成对图像信息的采集、存储、管理、处理及传输等功能,使得图像资料得以有效管理和充分利用。
PACS其主要应用方向为:设备集群使用:从多种影像设备或数字化设备中采集图像;拍照与打印等多种输出设备的 共享与选择;影像传输与分送:在医院内各科室之间快速传输图像数据;远程传输图像及诊断报告等;辅助医疗功能:医学图像资料的管理、处理、变换等。
pacs - 系统介绍
PACS系统(PictureArchivingandCommunicationSystem图像归档和通讯系统)原意为医学影像计算机存档与传输(医学影像的采集和数字化,图像的存储和管理,数字化医学图像的高速传输,图像的数字化处理和重现,图像信息与其它信息的集成五个方面)。而在第二代PACS系统中,已经扩大为HIS-PACS的无缝连接,将病人流变为信息流,关注的核心是医院临床业务的流程再造。通过第二代PACS系统,可以轻松的实现.无纸化、无胶片化,降低医院的运营成本,提高医院整体效率,提高临床诊断质量,实现远程医疗。
通俗的讲法,PACS系统出现类似于数码相机取代胶片相机。过去病人进行影像检查(如骨折拍片),需要等待胶片冲洗出来医生才能诊断。而现在直接从检查设备上读出图像到计算机上观察诊断,大大提高了效率。PACS系统延伸到医院其他的工作也进行数字化管理(如病历本不再手写,检查单不再手写,统计医生工作量不再依靠护士手工统计)
pacs - 系统构成
系统依照规模的大小,图像存档与传输系统(PACS)可分为四大类:科室内;院内图像发布系统;整个医院的PACS系统;基于全院PACS的远程放射医学系统。
依据需要解决的问题不同,存在各种各样的PACS系统设计方案,但概括来看,PACS系统由成像采集设备、远近程显示设备、储存设备和远近程通信设备等四部分组成。成像采集设备包括各类断层扫描成像系统和各种射线照相技术形成的胶片等硬拷贝数字化扫描采集设备;图像显示设备包括各种图像终端、图像工作站;图像存储设备包括软硬磁盘、磁带和光盘等存储设备;通讯设备包括调制解调器、网卡、电话交换系统、计算机局部网、广域网、公用数据网等有关硬件通信模块和设备。PACS在医学信息领域主要提供四方面的功能:在诊断、报告、会诊和远程工作站上观察医学图像;根据图像的性质,把图像储存在适于短期或长期保存的存储介质中;利用局域网、广域网和公共通讯设施进行通讯;向用户提供一个集成信息系统。PACS目的在于促进数字化医院环境的形成,提高诊断效率,降低成本。相对于传统的基于胶片的医学图像系统,无胶片的PACS具有众多的优势:数字图像代替胶片减少了制造和购买胶片及相应的化学制品的费用;无胶片化存档,可节省原来的硬拷贝和相关的管理费用、人力和场地,减少了管理胶片的工作人员,将不再有胶片的丢失、错放、老化等问题,大大降低了医院成本,可以更有效地使用庞大的医学图像资源为患者提供更好的服务,又达到了更高效、低价地观察、存储和传送医学图像的目的。同时,利用计算机先进的存储方式和强大的图像压缩功能以及网络传输能力,对已存储的图像进行多份拷贝变的简单又直接,快速获取图像,根据诊断的需要,可以灵活地处理图像,可以实现医院内部甚至远程的医院之间的医学图像信息的共享,便于提供远程医疗服务。
pacs - 关键技术
关键技术PACS涉及多项技术,它们包括:计算机、通讯、文件存储、数据获取、显示、图像数据压缩、人工智能、光电子设备、软件、标准化和系统集成。PACS涉及的关键技术问题标准化技术:标准化技术应用在建立PACS中是非常重要的。由于各厂家生产的影像设备的图像格式各异,网络接口标准不一致,阻碍了医学数字影像的交换和通讯;数字化图像信息的采集:首先要实现图像的数字化。CT、MRI、DSA、CR、DR以及一些超声成像等已是数字成像,通过采集接口模块或设备就可将数字化图像信息从主机中取出,并构成数据文件到存储设备中去,供显示或传输。而大量X射线成相系统仍处于非数字化图像阶段,通常购置数字化仪将它们数字化。由于各厂家生产的各种影像设备的图像格式各异,网络接口标准不一致,阻碍了医学数字影像的交换和通讯;图像压缩技术:医学图像数据量大,建立PACS中许多技术困难都与图像的压缩、传输、显示等有关。如何能对图像进行压缩,是多年图像处理技术研究重点之一,由于医学影像对医学诊断的可靠性影响非常大。
常用的也只有无损压缩算法;医用图像的归档管理:图像实现数字化以后,可将其分门别类存储于计算机介质中,如磁盘、光盘内,尤其是光盘存储器,以其经济实惠被广泛应用。一片光盘上可以存储几百幅图像;医用图像显示和通信技术:计算机技术为医学图像的观察提供了“数字信息监视器”组合模式,极大地方便和加速了医学图像资源的形成、周转和调阅。计算机软硬件技术和多媒体技术,使医学图像的显示图像监视器和图像工作站几乎可瞬时显示整幅图像。医学图像通信,首先是通过局域网在医院内部实现患者影像信息的调阅,其次是通过专线网或互联网实现影像的远程调用和异地诊断。
pacs - 发展情况
系统构成PACS是现代影像诊断的模式和潮流,是一项具有灿烂前景的高新技术,它的发展与普及将对医学发展起到重大的推动作用。把传统的医学图像拷贝方式改成电子式的软拷贝方式,推广应用PACS在医院是非常必要的,随着数字成像技术、计算机技术和网络技术的进步,国内众多医院其影像设备逐渐更新为数字化,PACS的应用和普及已成为现代化医疗不可阻挡的潮流。进入90年代,为了提高医院的现代化管理水平和工作效率,各级医疗机构对医院信息系统的建设给予了极大的关注,许多医院已经建立了不同规模的医院信息系统。就医院信息系统发展而言,医院信息系统大多数属于医院管理系统(HIS)的范畴,主要针对医院人员的财务管理;而同样是数字化医院环境重要组成部分的PACS却发展相对迟慢。
中国PACS系统发展还存在如下一些问题:研究和开发经费少;多数医院的医疗图像设备较为陈旧,很少有标准数字接口,尤其是能够利用网络传输医学图像的设备更为少见;医院的信息基础机构建设落后,多数医务人员对计算机应用环境不熟悉;以往开发的HIS/RIS系统往往忽略了标准化问题,难以进行与PACS系统的集成;多数影像设备是从国外引进的,在这样的环境下,PACS开发和应用过程中需要考虑中文化的问题。PACS发展应关注于:对医院信息基础结构的改进;对老旧图像设备的改造;对现有医院信息系统的标准化。国内由于对PACS的研究还处于初级阶段,在构建PACS时会遇到各种各样的技术问题。
在设计PACS系统时应该充分考虑系统所要实现的功能在选择规模时应该充分考虑医院的实际条件不要一哄而上。资金雄厚的大型医院由于在这一方面的工作开展较早,并且已经构成了小型或者部分PACS,这时可以考虑建立比较完整的PACS。而中小型医院由于资金和技术方面的原因,最好首先构建小型或部分PACS在一方面积累经验,而不是一味赶时髦。医院可以根据自身的条件和需求建立不同规模的PACS系统,逐步向数字化医院过度。尤为重要的是,医学图像领域的发展与技术的进步紧密相关,医学图像领域的进步是医院实际要求、大学和其他研究机构技术开发以及企业商业目标相互推动的结果,PACS系统开发和应用同样需要医院、研究机构及企业界的大力支持和良好的合作。
pacs - 前景展望
系统构成PACS 最初是从处理放射科的数字图像发展起来的。然而随着 PACS 标准化的进程,尤其是 ACR-NEMA(American College of Radiology & National Electrical Manufactures ′ Association ,美国放射学会和美国电器制造商学会 )DICOM(digital imaging and communications in medicine ,医学数字成像和通信标准 )3.0 标准的普遍接受,目前的 PACS 已扩展到所有的医学图像领域,如心脏病学、病理学、眼科学、皮肤病学、核医学、超声学以及牙科学等。
21世纪的医院管理系统中,PACS系统将占据医学诊断分析得据主导地位。
PCAS系统在应用中涉及到数字化存储图像,无胶片管理,节省用于冲洗、保存胶片和记录的大量人力物力;如:化学药品费用,处理和保养费用 、存储费用、摆放费用 、人工费用 、查阅费用 、送片费用;可提供更多医生网络化的协同工作;提供远程会诊功能,节省人力物力,同时能够提高医院会诊能力,扩大知名度。可以实现资料统计的自动化,对于科研分析有重大意义,同时可以对科室人员的工作量 和状态进行统计,能够发现管理薄弱环节,更好评价员工,激励员工,为科室创造更大的效益。可以规范诊断报告,打印出图文并茂的病历,同时生成电子病历,形成社区电子病历中心,为病人提供电子病历存放查询服务,增加对用户的影响力。 共享输出设备,节省设备投资,比如激光相机, DICOM相机等。减少、消除重复工作。更高的生产力 , 更低的运行成本和更多收入。不再丢失检查资料和胶片。
对于临床:提供更快、更有效获取病人信息的途径。通过与周围医院联合提供更多的医疗服。 方便临床医生随时调阅病人的信息。
对于放射医生:方便。在家或办公室即可读片,不用挤在集中读片的地方 快速得到病人的以往胶片。几秒钟便获得检查数据。多种图像,如超声,核磁, CT,DSA等图像可以直接参考对比,并进行相应图像处理,方便诊断。减小工作量和提高工作效率。影像可以永久利用。直接得到无失真的原始图像用于学术交流。
对于病人:减少住院时间。更快的诊断和治疗。同时参考多次检查结果。更快的报告时间。能够得到专家的服务 。
辅助医疗功能:医学图像资料的管理、处理、变换等。
核医学设备包括哪些
核医学设备:
1、核医学影像设备
包括PET(正电子发射计算机断层扫描仪)和SPECT(单光子发射计算机断层扫描仪)两大核医学影像设备,在分子影像学研究中占据着极其重要的地位。其中PET中的PET-CT是最先进的医学影像设备之一。
2、核医学功能检查设备:甲状腺功能仪、肾图仪、多功能仪、骨密度仪。
3、核医学免疫分析设备:γ-计数器、时间分辨、电化学发光、化学发光。
大基医疗:我们的核医学梦还有多远:
北大医院核医学科主任王荣福告诉记者:现在国家开始重视我们自己的核医学了,这说明我们在这方面已经开始起步了,领导人到企业调研考察,实际上是鼓励,也是发出信号,我们要关注支持我们自己的民族产业。
20多年来,大基医疗做得非常不容易,现在国家开始重视了,中国市场这么大,人口这么多,我们有技术有人才,像大基的PET 、PET-CT包括他的智能机器人。
通过从CT的床上转移到PET的床上,技术都很过硬。只有政府如何支持,我觉得任何领域都没有不能打破的神话,西门子的核医学技术是比我们强,但手机当年有诺基亚、摩托罗拉后来又有苹果,我们也有小米,未来拼的不是资本,是创新,创新才是未来的真正拥有者。
以上内容参考:人民网-大基医疗:我们的核医学梦还有多远
核医学科主要治什么病
其实核医学主要是起到辅助的功能比如检测探测等,我们熟悉的就是癌症的放射治疗。
① 体外脏器显像。有些试剂会有选择性地聚集到人体的某种组织或器官。以发射γ射线的同位素标记这类试剂,将该试剂给患者口服或注射后,利用γ照相机等探测仪器,就可以从体外显示标记试剂在体内分布的情况,了解组织器官的形态和功能。例如硫化Tc胶体经注射进入血液后,能被肝脏的枯氏细胞摄取,探测仪器在体外的记录可显示出肝脏放射性物质的分布,从而可判断肝脏的大小、形态和位置,肝脏是否正常,有无肿块等等。这种检查已成为肝癌诊断的不可缺少的方法。目前脏器显像已广泛用于肝、脑、心、肾、肺等主要组织、器官的形态和功能检查。
同位素脏器显像不但反映脏器形态,而且可显示脏器的生化或生理功能。例如,肝闪烁图反映肝细胞吞噬功能、脑闪烁图反映血脑屏障功能、肺扫描则反映肺灌注或通气功能。闪烁照相还能够对某一器官连续摄影,使医生能够对器官功能和病理变化进行动态观察。
发射计算机断层仪是体外显像的一种先进工具。用它可灵敏地观察到同位素在人体内任一平面的分布,也可以从许多断层影像重现三维形象。采用适当标记试剂时,连闭上眼睛所引起的脑中一定区域内血流量或葡萄糖代谢的细微变化,都可用此仪器测定出来。它在早期诊断疾病上很有发展前途。
② 脏器功能测定。测定器官功能的同位素方法。例如,测定甲状腺摄I离子的数量和速度,以检查甲状腺功能状态;在注射(碘-131)-邻碘马尿酸后,用探测仪器同时记录两侧肾区放射性起落变化曲线,以检查两侧肾脏血流情况、肾小管分泌功能和输尿管通畅程度;在注Cr标记的红细胞后,测定血中放射性消失的速度,以查出红细胞寿命等。
③ 体外放射分析。用竞争放射分析这种超微量分析技术,可以准确测出血、尿等样品中小于10~10克的激素、药物、毒物等成分。用这种方法测定的具有生物活性的物质已达到数百种。中国曾把这种技术用于妊娠早期检查、献血员肝炎病毒检查、肝癌普查等。另外,还可以通过中子活化分析测出头发、指甲、血、尿等样品中的各种微量元素,用来诊断微量元素异常所引起的一些疾病。
核射线有杀伤细胞的能力。用放射性碘治疗甲状腺功能亢进,是内服同位素疗法中最成功的例子。I的β射线可有效地将甲状腺组织破坏,等于进行了一次“无刀手术”P常用于治疗真性红细胞增多症。还可采用放射性磷、锶等同位素敷贴疗法治疗血管瘤、湿疹、角膜炎症等浅表部位的皮肤病和眼科疾病。此外,钴治疗机、电子感应加速器、直线加速器等外照射治疗已成为治疗恶性肿瘤的重要手段,在癌症治疗中所占的比重高达70%左右,而且遍及癌症的绝大部分病种。
还没有评论,来说两句吧...